Summary of Verifying Current Flooding with Remote Sensing Imagery
Many of the potential floodplain occurrences were located on sections of the mainstream rivers and its tributaries where the hydrology has been altered in varying ways, sometimes radically.  To identify the most ecologically intact examples, and the examples most readily restorable, we wanted to determine which occurrences still experience some level of seasonal flooding. 
Methodologies for evaluating the extent of current flooding across large areas have been developed using processed Landsat Thematic Mapper imagery (Hudson & Colditz 2003; Wang, 2004). Landsat imagery owes its utility for this purpose to its wide coverage, a 16 day return interval, and favorable spectral and spatial resolution (six bands in the visible and near and middle infrared regions of the electromagnetic spectrum at a spectral resolution of 28.5 meter resolution, and a panchromatic band of 15 meters). To identify those areas flooded in the spring yet dry in the fall (e.g. seasonal flooding) requires imagery from both a spring flooding event and an autumn dry period. To this end, we acquired Landsat Thematic Mapper imagery (TM 4-5 or TM ETM+) on a high flow and flow day for each of 53 scenes covering the analysis area.  
Analysis of Gage Data to Select High Flow and Low Flow Imagery
Gage data was used to identify available images with low and high flow. We analyzed over 183 gages of data. In each tile, we selected at least four gages which were located on the mainstream or its larger tributaries. The two criterions for gages were as follow: 1) on a large river with drainage more than 500mi2 and 2) use natural flow gages rather than altered flow gages which have large dam effect if available. (Figure: Gages)
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Figure1: 14 Landsat Scene Tiles withUSGS Gages. (Gages in green have more natural flows and those in red have dam altered flows)
For each gage we calculated the percentage and rank for flow daily values over the record of the gage.  For dates of available imagery for each of the 53 tiles, we then attached a calculated average, min, and max percentile of flow value from gages within that tile to quantify the flow conditions on that date.  To narrow down the list of potentially usable image dates, we only considered images with cloud cover less than 10 percent and images <25 years old. Based on the gage flow percentile values for the available image dates, we selected 2-4 possible images representing the highest flows and 2-4 images representing lower flows.  Each of the possible images were then visually inspected to determine the location of clouds and other spectral problems that might have been present and could eliminate some images from further consideration. The final images ordered represented the highest or lowest flow images available with very good spectral quality.  For the high flow images ordered, 74% (39 tiles) had average gage flows >95 percentile and the other 26% (14 tiles) ranged from 83-94 percentile flows on the date of the imagery.  52% of the high flow images were from year 2000 or later, 82% were from years 1994 or later, and the remaining oldest images were from 1986 and 1991 in tiles where no other high spectral quality high flow images were available.  For the low flow images, 85% (45 tile) had average gage flows <10 percentile and the other (8 tiles) had average gage flows <17 percentile on the date of imagery.  Ninety-one percent of the low flow images were from year 1995 or later, while the remaining five tiles were from 1984 and 1988 where again no high spectral quality low flow image was available.   For more information, please see the document name Image Choice Procedure about the Northeastern Inundated Floodplain Analysis (J. Chen & A. Olivero June 2009). 
Change Detection
A standard technique in change detection analysis is to generate a multi-date composite image combining three bands that will capture and reflect the changes that have occurred over the time period.  For this study, bands 1 was derived from the addition of the high flow image’s band 4 and 7, and band 2 was created from the addition of the low flow image’s band 4 and band 7.  For the third band in the composite image we used a hill shade map derived from the USGS 30 meter DEM.  This was advisable because topographic shadows in areas of moderate to high relief can produce spectral reflectance signatures similar to that of water.  Incorporating the elevation information in the composite image alleviated this problem by allowing the separation of flooded flats and shaded slopes. (Figure: composite image)
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Figure: Composite Image

 A) Additive image of TM bands 4 and 7 for High flow.  B) Additive image of TM band 4 and band 7 for low flow.  C) Hill shade layer.  D) Composite image (Areas of flooding are in green)

There were two main options for us to do classification, including the supervised and unsupervised classification. In order to extract pixels representing flooded areas into their own dataset, we performed an unsupervised classification on the composite image.  Use of the latter was justified because the flooded areas were well enhanced, and because an unsupervised classification does not require a priori information and thus offers a more efficient and reliable solution than a supervised classification. Due to the complexity of topography, we need extract the certain uncertain areas in the first classification to do the second unsupervised classification. In the end, merge the first and second results to retrieve final classification map. 
All image analysis took place in the ERDAS Imagine (ERDAS, 2006) and ArcGIS 9.2 version software environment. Images processing steps included image registration based on NLCD (National Land cover data set), atmospheric correction, abstracting band 4 and band 7 from high flow, low flow images and adding up them, creating hill shade based on DEM, compositing abstracting information to create a new image to do unsurprised classification. (Figure: Flowchart of image processing). For more information, please see the document named Floodplain Analysis using Landsat Imagery in ERDAS (J. Chen, A. Olivero, C. Ferree, June 2009) 
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Figure: Flowchart of image processing

Accuracy Assessment

It was not possible to find higher resolution orthophoto imagery of documented flood events for tiles as the reference sources for accuracy assessment. Classification accuracy assessment was instead performed using the existent TM remote sensing images.  In the fourteen tiles, we select the P 17 R 31 tile located in Pennsylvania State and P19R33 tile located in Ohio State as the representative tiles to do accuracy assessment. 

There are four categories for upper Ohio floodplain analysis classification map. They are non-floodplain, possible floodplain, definite floodplain, stable water. Based on the existent river information, including the main stream and river lakes etc., we extracted two kilometer buffer areas as the accuracy assessment target areas. In the limited conditions for reference sources, we use the stratified sampling method rather the simple sampling method to improve estimates of Thematic Map accuracy .  We assigned at least 25 points for the smallest class, the other classes’ sample size is proportion to the extraction of the ratio of its number of pixels and the number of the smallest class pixels. For each extracted point, the source TM images were viewed by Juanmin Chen and she placed each point into one of the 4 map categories based on her visual assessment of if it looked like stable water, definite floodplain/flooded, possibly floodplain/possibly flooded, or upland.  Juanmin’s visual classification was them compared to the computer classifed map classes at the points.  The overall accuracy of the computer classified map for the P 17 R 31 is over 0.96 and the P19 R 33 is beyond 0.97.  Given the map class, the probability correct for non-floodplain, possible floodplain, definite floodplain, stable water are 0.98, 0.77, 0.8 and 0.91 in P17 R31 tile’s assessment areas, 0.97, 0.76, 0.88, 0.96 in P19 R33 tile’s assessment areas.  ).  From the overall accuracy rate, the methodology for finding floodplain area is proved efficient and high accurate.   For more information, please see the document named Upper Ohio Floodplain Analysis Draft Classification results Accuracy Assessment. (J. Chen, A. Olivero, C. Ferree, Dec. 2007)

Results
The analysis within the 14 tile extent yielded the following mapped areas:

1. Area of definite floodplain/definitely inundated:  1920408.17 acres
2. Area of possible floodplain/possibly inundated: 2651131.34 acres 
3. Area of stable water: 44893446.41 acres
4. Area of non-floodplain/upland (not inundated): 238515434.65 acres
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